Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Type of study
Language
Document Type
Year range
1.
Cells ; 10(12)2021 11 26.
Article in English | MEDLINE | ID: covidwho-1551567

ABSTRACT

High mobility group box 1 protein (HMGB1), a highly conserved nuclear DNA-binding protein, is a "damage-associated molecular pattern" molecule (DAMP) implicated in both stimulating and inhibiting innate immunity. As reviewed here, HMGB1 is an oxidation-reduction sensitive DAMP bearing three cysteines, and the post-translational modification of these residues establishes its proinflammatory and anti-inflammatory activities by binding to different extracellular cell surface receptors. The redox-sensitive signaling mechanisms of HMGB1 also occupy an important niche in innate immunity because HMGB1 may carry other DAMPs and pathogen-associated molecular pattern molecules (PAMPs). HMGB1 with DAMP/PAMP cofactors bind to the receptor for advanced glycation end products (RAGE) which internalizes the HMGB1 complexes by endocytosis for incorporation in lysosomal compartments. Intra-lysosomal HMGB1 disrupts lysosomal membranes thereby releasing the HMGB1-transported molecules to stimulate cytosolic sensors that mediate inflammation. This HMGB1-DAMP/PAMP cofactor pathway slowed the development of HMGB1-binding antagonists for diagnostic or therapeutic use. However, recent discoveries that HMGB1 released from neurons mediates inflammation via the TLR4 receptor system, and that cancer cells express fully oxidized HMGB1 as an immunosuppressive mechanism, offer new paths to targeting HMGB1 for inflammation, pain, and cancer.


Subject(s)
Disulfides/metabolism , HMGB1 Protein/metabolism , Inflammation/metabolism , Protein Processing, Post-Translational , Animals , COVID-19/metabolism , Humans , Sensory Receptor Cells/metabolism
2.
Pain Rep ; 6(1): e885, 2021.
Article in English | MEDLINE | ID: covidwho-1238293

ABSTRACT

SARS-CoV-2 is a novel coronavirus that infects cells through the angiotensin-converting enzyme 2 receptor, aided by proteases that prime the spike protein of the virus to enhance cellular entry. Neuropilin 1 and 2 (NRP1 and NRP2) act as additional viral entry factors. SARS-CoV-2 infection causes COVID-19 disease. There is now strong evidence for neurological impacts of COVID-19, with pain as an important symptom, both in the acute phase of the disease and at later stages that are colloquially referred to as "long COVID." In this narrative review, we discuss how COVID-19 may interact with the peripheral nervous system to cause pain in the early and late stages of the disease. We begin with a review of the state of the science on how viruses cause pain through direct and indirect interactions with nociceptors. We then cover what we currently know about how the unique cytokine profiles of moderate and severe COVID-19 may drive plasticity in nociceptors to promote pain and worsen existing pain states. Finally, we review evidence for direct infection of nociceptors by SARS-CoV-2 and the implications of this potential neurotropism. The state of the science points to multiple potential mechanisms through which COVID-19 could induce changes in nociceptor excitability that would be expected to promote pain, induce neuropathies, and worsen existing pain states.

SELECTION OF CITATIONS
SEARCH DETAIL